Open Access
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 02005
Number of page(s) 14
Section Structural health monitoring
Published online 01 September 2014
  1. Upwind – Integrated Wind Turbine Design. Project funded by the European Commission under the 6th (EC) RTD Project No. 019945 (SE6), (2010)
  2. Smith E. A. L., Pile driving analysis by the wave equation. Journal of Soil Mechanics and Foundation. 86(4): 35–61, (1960)
  3. Hardin, B0, Black, WL. Vibration modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division ASCE 1968; 92(2): 353–369
  4. Hardin, B. O. and Drnevich, V. P., Shear modulus and damping in soils: design equations and curves Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers 98 7, pp. 667–692, (1972)
  5. Masing, G., Eigenspannungen und Verfeistigung beim Messing Proc. 2nd Int. Congress of Appl.Mech., pp. 332–335 (1926)
  6. Kondner, R. L., Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 89, No. SM1, pp.115–143 (1963)
  7. Ishibashi, I., & Zhang, X., Unified dynamic shear moduli and damping ratios of sand and clay. Soils and Foundations, 33(1), 182–191 (1993) [CrossRef]
  8. Vucetic, M. & Dobry, R., Effect of soil plasticity on cyclic response J. Geotech. Engng, ASCE 117, No. 1, 89–107 (1991)
  9. Holeyman, A., HIPERVIB-II, A detailed numerical model proposed for Future Computer Implementation to evaluate the penetration speed of vibratory driven sheet Piles Research report for BBRI, EarthSpectives, Irvine, Ca, USA, 54p (1993)
  10. Bauer, E., Calibration of a Comprehensive Hypoplastic Model for Granular Materials. Soils and Found. 36(1), 13–26 (1996). [CrossRef]
  11. Von Wolffersdorff, P. A., A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials (1),251–271 (1996) [CrossRef]
  12. Sommerfeld, A., Mechanics, Lectures on Theoretical Physics, volume I. Academic press Inc., 4 edition (1952)
  13. Storz, M., Chaotic Motion in Pile-Driving. First International Conference Soil Dynamics and Earthquake Engineering (pp. 503–512). Southhampton, England: Computational Mechanics (1991)
  14. Novak M., Dynamic stiffness and damping of piles Can. Geotech. J. 11, No. 4, 574–598 (1974) [CrossRef]
  15. Novak, M. and Sheta, M., Approximate approach to contact effects of piles In Special technical publication on dynamic response of pile foundations: analytical aspects (eds M. W. O’Neill & R. Dobry). New York: ASCE (1980)
  16. Mitwally H and Novak M, Pile driving analysis using shaft and FEM. Proceedings of the third international conference on the application of stress wave theory to piles; Bitech Publishers, Vancouver (1988)
  17. Han Y.C. and Sabin G.C., Impedances for radially inhomogeneousviscoelastic soil media J. of Engrg. Mechanics, Vol.121, No.9, pp.939–947 (1995)
  18. El Naggar, M. & Novak, M., Nonlinear axial interaction in pile dynamics. Journal of Geotechnical Engineering, 120(4): 678–696 (1994) [CrossRef]
  19. El Naggar, M. & Novak, M., Nonlinear model for dynamic axial pile response. Journal of Geotechnical Engineering, 120(2): 308–329 (1994) [CrossRef]
  20. Gazetas, G. and Dobry, R., Simple radiation damping model for piles and footings. J. Engrg. Mech., ASCE, 10(6), 937–956 (1984) [CrossRef]
  21. Veletsos, A. S. & Dotson, K. W., Vertical and torsional vibration of foundations in inhomogeneous media J. Geotechnical Engineering Division, ASCE 114, No. 9, 1002–1021(1988) [CrossRef]
  22. Michaelides O., Gazetas G., Bouckovalas G. and Chrysikou E, Approximate nonlinear dynamic axial response of piles Geotechnique 48, No.1, 33–53 (1997)
  23. Michaelides O., Bouckovalas G. and Gazetas G., Non-linear soil properties and impedances for axially vibrating pile elements Soils and foundations, Vol.38, No.3, 129–142 (1988)
  24. Holeyman, A., Bertin, R., and Whenham, V., Impdedance of pile shafts under axial vibratory loads, Soil Dynamics and Earthquake Engineering, 10.1016/j.soildyn.2012.09.006, 44 115–126 (2013)
  25. Holeyman, A., Contribution à l’étude du comportement transitoire non-linéaire des pieux pendant leur battage. Doctoral thesis, Université Libre de Bruxelles, April, 1984, 584 p. (1984)
  26. Holeyman, A., Dynamic non-linear skin friction of piles, Proceedings of the International Symposium on Penetrability and Drivability of Piles, San Francisco, 10 August, Vol. 1, pp. 173–176 (1985)
  27. Holeyman, A., Technology of Pile Dynamic Testing, in: Application of Stress-Wave Theory to Piles, edited by F. Barends, Balkema, Rotterdam, pp. 195–215 (1992)
  28. Holeyman, A., and Legrand, C., Soil Modeling for Pile Vibratory Driving, U.S. FHWA International Conference on Design and Construction of Deep Foundations, Orlando, Florida, December 1994, Vol. II, pp. 1165–1178 (1994)
  29. Holeyman, A., Vibratory Pile Driving, in: Quality Assurance on Land and Offshore Piling, Edited by S. Nyyama and J. Beim, Balkema Publishers, Rotterdam, 2000, pp.479–494 (2000)
  30. Bertin R., Modélisation de l’interaction axiale solpieu – Détermination des paramètres d’impédance d’un milieu non-homogène Master’s thesis, Université Catholique de Louvain (2009)
  31. Randolph, M.F. and Wroth, C.P., Analysis of deformation of vertically loaded piles, J. Geotech. Eng. Div. ASCE 104(GT12): 1465–1488 (1978)
  32. Malek, A. and Holeyman, Flexural Analysis in Dynamic Pinned Head Pile Testing, Geotech Geol Eng 32:59–70 (2014) [CrossRef]
  33. Malek, A. and Holeyman, A., Numerical evaluation of nonlinear lateral pile vibrations on nonlinear axial response of pile shaft Soils and foundations, 10.1016/j.sandf.2013.04.002, (2013)