Open Access
MATEC Web of Conferences
Volume 15, 2014
Building Surveying, Facilities Management and Engineering Conference (BSFMEC 2014)
Article Number 01034
Number of page(s) 9
Published online 19 August 2014
  1. Ulhaq, M. & Alex, L. (2007). Light Weight/Low Cost Construction Methods For Developing Countries. International workshop-cement based material and civil infrastructure (CBM-CI) Karachi, Pakistan, 491–504.
  2. Dijik, S. V. (1991). Foamed concrete in Concrete, UK. Slough: British Cement Association. pp. 49–54
  3. Kearsley, E. P. (1996). The use of foamcrete for affordable development in third world countries 232–242.
  4. Noordin, N. & Awang, H. (2005). Lightweight Foamed Concrete in Construction. International Conference on Construction and Real Estate Management, The Challenge of Innovation. Building Press., Penang, Malaysia.
  5. Ramamurthy, K., Nambiar, E. K. K. & Ranjani, G. I. S. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388–396 [CrossRef]
  6. AïTcin, P. C. (2008). Binders for Durable and Sustainable Concrete, London and New york. Taylor & Francis pp.373–513
  7. Siddique, R. & Khan, M. I. (2011). Supplementary Cementing Materials, London New York. Springer. pp. 121–174
  8. Maier, P. L. & Durham, S. A. (2012). Beneficial use of recycled materials in concrete mixtures. Construction and Building Materials, 29, 428–437. [CrossRef]
  9. Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials, 10(5), 309–314. [CrossRef]
  10. TopçU, I. B. & Boga, A. R. (2010). Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete. Materials and Design, 31, 3358–3365. [CrossRef]
  11. Babu, K. G. & Kumar, V. S. R. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research 30, 1031 1036.
  12. Memon, N. A., Sumadi, S. R. & Ramli, M. (2007). Performance of high wokability slag-cement mortar for ferrocement. Building and Environment, 42, 2710–2717. [CrossRef]
  13. Aydin, S. 2008. Development of a high-temperature-resistant mortar by using slag and pumice. Fire Safety Journal 43, 610–617. [CrossRef]
  14. Dehuai, W. & Zhaoyuan, C. (1997). On predicting compressive strength of mortars with ternary blended cement, GGBFS and Fly ash Cement and Concrete Research, 27(4), 487–493. [CrossRef]
  15. Aguilar, R. A., Díaz, O. B. & García, J. I. E. (2010). Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials, 24, 1166–1175. [CrossRef]
  16. Wee, T.-H., Babu, D. S., Tamilselvan, T. & Lim, H.-S. (2006). Air-Void System of Foamed Concrete and its Effect on Mechanical Properties. ACI Material 103(1), 45–52.
  17. Aljoumaily Z. S., Noordin, N., Awang, H. & Almulali, M. Z. (2012). The Effect of Blast Furnace Slag on Foam Concrete in Terms of Compressive Strength. Advanced Materials Research, 587,81-87. [CrossRef]
  18. BS EN 196-1:2005 (2005). Methods of testing cement. Determination of strength. BSI, London, UK.
  19. ASTM: C 150 Standard Specification for Portland Cement. ASTM international, USA.
  20. BS 812-103.1:1985 (1985), Testing aggregates. Method for determination of particle size distribution. Sieve tests. BSI, London, UK.
  21. BS EN 15167-1:2006, (2006). Ground granulated blast furnace slag for use in concrete, mortar and grout. Definitions,specifications and conformity criteria. BSI, London, UK.
  22. American Concrete Institute (ACI) (2006). 523.1R-06 Guide for Cast-in-Place Low Density Cellular Concrete.
  23. Mahmood, Z. S. & Noordin, N. (2010). Low-Medium Cost House “Design And Construction Two Storey House From Lightweight Concrete”. Master, Univesiti Sains Malaysia.
  24. Jones, M. R. & Mccarthy, A. (2005a). Preliminary views on the potential of foamed concrete as a structural material. ice, 57(1), 21–31.
  25. Jones, M. R. & Mccarthy, A. (2005b). Behaviour and assessment of foamed concrete for construction Applications University of Dundee, UK, 61 – 83.
  26. BS EN 12390-3:2009. (2009), Testing hardened concrete. Compressive strength of test specimens. BSI., London, UK.
  27. Hamidah, M., Azmi, I., Ruslan, M., Kartini, K. & Fadhil, N. (2005). Optimisation of foamed concrete mix of different sand–cement ratio and curing conditions. (DHIR, R.K., NEWLANDS, M.D. & MCCARTHY, A.), Thomas Telford., University of dundee, Scotland, UK., 37–50.
  28. Newman, J. & Owens, P. (2003). Properties of lightweight concrete. In: JOHN NEWMAN, B.S.C. (ed.) Advanced Concrete Technology Processes. USA: Elsevier Ltd. [CrossRef]
  29. Awang, H., Othuman, M. A. & Roslan, A. F. (2012). Effect of additives on mechanical and thermal properties of lightweight foamed concrete Advances in Applied Science Research, 3(5), 3326–3338.
  30. BS EN 12390-6:2009, (2009) Testing hardened concrete. Tensile splitting strength of test specimens. BSI., London, UK.