Open Access
MATEC Web of Conferences
Volume 11, 2014
International Congress on Materials & Structural Stability
Article Number 01034
Number of page(s) 4
Section Materials & Pathologies
Published online 28 April 2014
  1. N. D., Phan and J. N. Reddy. Analysis of Laminated Composite Plates using a Higher-order Shear Deformation Theory, Int. J. for Numerical Methods in Engineering, 21: 2201–2219. (1985) [CrossRef]
  2. Kant, T. and Swaminathan, K. Analytical Solutions for Free Vibration of Laminated Composite and Sandwich Plates Based on a Higher-order Refined Theory, Composite Structures, 53: 73–85. (2001). [CrossRef]
  3. Matsunaga, H. Vibration and Stability of Cross-ply Laminated Composite Plates According to a Global Higher-order Plate Theory, Composite Structures, 48: 231–244 (2000). [CrossRef]
  4. El-Zafrany, A., Fadhil, S. and Al-Hosani, K. A New Fundamental Solution for Boundary Element Analysis of Thick Plates on Winkler Foundation, Int. J. Numer. Meth. Eng. 38: 887–903(1995). [CrossRef]
  5. Omurtag, M. H. and Kadioglu, F. Free Vibration Analysis of Orthotropic Plates Resting on Pasternak Foundation by Mixed Finite Element Formulation, Computers and Structures, 67: 253–265 (1998). [CrossRef]
  6. Setoodeh, A. R. and Karami, G. Static, Free Vibration and Buckling Analysis of Anisotropic ThickLaminated Composite Plates on Distributed and Point Elastic Supports using a 3-D Layer-wise FEM, Engineering Structures, 26: 211–220. (2004) [CrossRef]
  7. Xiang, Y., Kitipornchai, S. and Liew, K.M. Buckling and Vibration of Thick Laminates on Pasternak Foundation, J. Eng Mech. ASCE, 122 (1): 54–63. (1996). [CrossRef]
  8. S.S. Akavsi ;Buckling and Free Vibration Analysis of Symmetric and Antisymmetric Laminated Composite Plates on an Elastic Foundation Journal of Reinforced Plastics and Composites 26(2007);
  9. Noor, A. K. Stability of Multilayered Composite Plates, Fibre Sci. Technology, 8(2): 81–89. (1975). [CrossRef]
  10. Reddy, J.N. and Khdeir, A. A Buckling and vibration of laminated composite Plates Using Various Plate Theories, AIAA J. 12: 1808–1817 .(1989). [CrossRef]
  11. El meiche N. Tounsi A. Ziane N. Mechab I. Adda Bedia E. A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. International Journal of Mechanical Sciences. 53: 237–247 (2011). [CrossRef]