Open Access
MATEC Web of Conferences
Volume 9, 2013
1st International Seminar for Fire Safety of Facades
Article Number 06002
Number of page(s) 11
Section Products and Material
Published online 29 November 2013
  1. Karlsson, B., and Quintiere, J.G., Enclosure Fire Dynamics, CRC Press, 2000.
  2. Wang, C.Y. and Ang, C.N., “Effect of moisture transfer on specific heat of gypsum plasterboard at high temperatures”, Construction and Building Material, 16, 505–515, 2004.
  3. Kontogeorgos, D.A. and Founti, M.A., “Numerical investigation of simultaneous heat and mass transfer mechanisms occurring in a gypsumboard exposed to fire”, Applied Thermal Engineering, 30, 1461–1469, 2010. [CrossRef]
  4. Kolaitis, D.I. and Founti, M.A., “Development of a solid reaction kinetics gypsum dehydration model appropriate for CFD simulation of gypsum plasterboard wall assemblies exposed to fire”, Fire Safety Journal, 58, 151–159, 2013. [CrossRef]
  5. Cabeza, L.F., Castell, A., Barreneche, C., de Gracia, A. and Fernandez, A.I., “Materials used as PCM in thermal energy storage in buildings: A review”, Renewable and Sustainable Energy Reviews, 15, 1675–1695, 2011. [CrossRef]
  6. Zhou, D., Zhao, C.Y. and Tina, Y., “Review on thermal energy storage with phase change materials (PCMs) in building applications”, Applied Energy, 92, 593–605, 2012. [CrossRef]
  7. Banu, D., Feldman D., Haghighat, F., Paris, J. and Hawes, D., “Energy-storing wallboard: Flammability tests”, Journal of Materials in Civil Engineering, 10, No.2, 98–105, 1998. [CrossRef]
  8. Hunger, M., Entrop, A.G., Mandilaras, I., Brouwers, H.J.H. and Founti, M., “The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials”, Cement and Concrete Composites, 3, 731–743, 2009. [CrossRef]
  9. Hawlader, M.N.A., Uddin, M.S. and Khin, M.M., “Microencapsulated PCM thermal-energy storage system”, Applied Energy, 74, 195–202, 2003. [CrossRef]
  10. Sittisart, P. and Farid, M.M, “Fire retardants for phase change materials”, Applied Energy, 88, 3140–3145, 2011. [CrossRef]
  11. Kosny, J., Yarbrough, D.W., Riazzi, T., Leuthold, D., Smith, J.B. and Bianchi, M., “Development and testing of ignition resistant microencapsulated phase change material”, Proceedings of the 11th International Congress on Thermal Energy Storage (Effstock), Stockholm, Sweden 14–17 June, 2009.
  12. Sanchez-Silva, L., Rodriguez, J.F., Romero, A., Borreguero, A.M., Carmona, M., Sanchez, P., “Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation”, Chemical Engineering Journal, 157, 216–222, 2010. [CrossRef]
  13. Willax, H., Katz, B., Jung, M.R., Altmann, S., Jahns, E., “Gypsum Wall Board Containing Micro-encapsulated Latent Heat Accumulator materials”, Patent, appl. Number 20120196116 (2 August 2012).
  14. Schartel, B., and Hull, T.R., “Development of fire-retarded materials – Interpretation of cone calorimeter data”, Fire and Materials, 31, 327–354, 2007. [CrossRef]
  15. McGraw, J.R. and Mowrer, F.W., “Flammability and dehydration of painted gypsum wallboard subjected to fire heat fluxes”, Fire Safety Science, 6, 1003–1014, 2000. [CrossRef]
  16. McGrattan, K., Hostikka, S. and Floyd, J., Fire Dynamics Simulator User's Guide, 2010.
  17. McGrattan, K., Verification and validation of selected fire models for nuclear power plant applications, volume 7: Fire Dynamics Simulator (FDS), Final Report, NUREG-1824, EPRI 1011999, Washington DC, USA, 2006.
  18. Yaws, C.L., Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel, 1996 (update 2004).
  19. Lyon, R.E., “An integral method of non isothermal kinetic analysis”, Thermochemical Acta, 297, 117–124, 1997. [CrossRef]
  20. Manzello, L.S., Gann, G.R., Kukuck, R.S. and Lenhert, B.D., “Influence of gypsum board type on real fire performance of partition assemblies”, Fire and Materials, 31, 425–442, 2007. [CrossRef]
  21. EN 1995-1-2, Eurocode 5, Design of timber structures – Part 1-2: General – Structural fire design. 2004.