Open Access
MATEC Web of Conferences
Volume 6, 2013
Concrete Spalling due to Fire Exposure: Proceedings of the 3rd International Workshop
Article Number 07004
Number of page(s) 9
Section Related Research
Published online 17 September 2013
  1. Ghan Y.N., Peng G.F., Anson M., Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cement and Concrete Composites, 21(1), 23–27, 1999. [CrossRef]
  2. Schneider U, Behavior of concrete at high temperatures, Beuth Verlag, Berlin, 122, 1982.
  3. Phan L.T., Carino N.J., Review of mechanical properties of HSC at elevated temperature, Journal of Materials in Civil Engineering, 10(1), 58–64, 1998. [CrossRef]
  4. Smith L.M., The assessment of fire damage to concrete structure, PhD thesis, Paisley College of Technology, 490, 1983.
  5. Castillo C., Durrani A.J., Effect of transient high temperature on high-strength concrete. ACI Materials Journal, 87(1), 47–53, 1990.
  6. Jahren P.A., Fire resistance of high strength/dense concrete with particular references to the use of condensed silica fume – a review, In Proceedings of the Third International Conference, Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, AC1 SP-114, Detroit, USA, 1013–1049, 1989.
  7. Hager I., Comportement à haute température des bétons de haute performance - évolution des principales propriétés mécaniques, PhD thesis, Ecole Nat. des Ponts et Chaussées, France, 183, 2004.
  8. Aitcin P.C., The durability characteristics of high performance concrete: a review, Cement and Concrete Composites, 25(4-5), 409–420, 2003. [CrossRef]
  9. Bazant P.Z., Kaplan M.F., Concrete at high temperatures, Material, properties and mathematical models, Longman, Harlow, England, 412, 1996.
  10. Khoury G.A., Effect of fire on concrete and concrete structures, Progress in Structural Engineering and Materials, 2(4), 429–447, 2000. [CrossRef]
  11. Bayramov F., Tasdemir C., Tasdemir M.A., Optimisation of steel fibre reinforced concretes by means of statistical response surface method, Cement and Concrete Composites, 26(6), 665–675, 2004. [CrossRef]
  12. Lau A., Anson M., Effect of high temperatures on high performance steel fibre reinforced concrete, Cement and Concrete Research, 36(9), 1698–1707, 2006. [CrossRef]
  13. Çavdar A., A study on the effects of high temperature on mechanical properties of fiber reinforced cementitious composites, Composites Part B, 43(5), 2452–2463, 2012. [CrossRef]
  14. Bangi M.R., Horiguchi T., Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures, Cement and Concrete Research, 42(2), 459–466, 2012. [CrossRef]
  15. Olivares F.H., Barluenga G., Fire performance of recycled rubber-filled high-strength concrete, Cement and Concrete Research, 34, 109–117, 2004. [CrossRef]
  16. Khaloo A.R., Dehestani M., Rahmatabadi P., Mechanical properties of concrete containing a high volume of tire - rubber particles, Waste Management Journal, 28(12), 2472–2482, 2008. [CrossRef]
  17. Turki M., Bretagne E., Rouis M.J., Quéneudec M., Microstructure, physical and mechanical properties of mortar – rubber aggregates mixtures, Construction and Building Materials, 23(7), 2715–2722, 2009. [CrossRef]
  18. Gesoğlu M., Guneyisi E., Permeability properties of self-compacting rubberized concretes, Construction and Building Materials, 25(8), 3319–3326, 2011. [CrossRef]
  19. NP EN 206-1, Concrete Part 1: Specification, performance, production and conformity, 84, 2007.
  20. RILEM TC - 200 HTC, Mechanical Concrete Properties at High Temperature – Modelling and Applications, Materials and Structures, 38(284), 913–919, 2005.