Open Access
MATEC Web of Conferences
Volume 6, 2013
Concrete Spalling due to Fire Exposure: Proceedings of the 3rd International Workshop
Article Number 05003
Number of page(s) 8
Section Advanced Modeling for Spalling Risk Assessment
Published online 17 September 2013
  1. Connolly, R.J., The spalling of concrete in fires, PhD Thesis, Aston University, 1995.
  2. Khoury, G.A., Effect of fire on concrete and concrete structures, Progress Struct Eng Mat, 2, 429–447, 2000. [CrossRef]
  3. Kalifa P., Chene G. and Galle C., High-temperature behaviour of HPC with polypropylene fibers: From spalling to microstructure, Cem Concr Res, 31, 1487–1499, 2001. [CrossRef]
  4. Zeiml M., Leithner D., Lackner R. and Mang H.A., How do polypropylene fibers improve the spalling behaviour of in-situ concrete. Cem Concr Res, 36, 29–942, 2006. [CrossRef]
  5. Zeiml M., Lackner R., Leithner D. and Eberhardsteiner J., Identification of residual gas-transport properties of concrete subjected to high temperatures, Cem Concr Res, 38, 699–716, 2008. [CrossRef]
  6. Kollek J.J., The determination of permeability of concrete by CEMBureau method: a recommendation, Mater Struct, 22, 225–230, 1989. [CrossRef]
  7. Periškić G., Entwicklung eines 3D thermo-hygro-mechanischen Modells für Beton unter Brandbeanspruchung und Anwendung auf Befestigungen unter Zuglasten, PhD Thesis, University of Stuttgart, 2009. [in German]
  8. Ožbolt J., Li Y.J. and Kožar I., Microplane model for concrete with relaxed kinematic constraint, Int J Solids Struct, 38, 2683–2711, 2001. [CrossRef]
  9. Klinkenberg L.J., The permeability of porous media to liquids and gases, American Petroleum Institute, Drilling Production Practice, 200–213, 1941.
  10. Bošnjak J., Ožbolt J., Sharma A. and Periškić G., Permeability of concrete at high temperatures and modelling of explosive spalling, Proceedings of FraMCoS-8, Van Mier, Ruiz, Andrade, Yu and Zhang (Eds), Toledo, Spain, 11/3–14/3, 2013.
  11. Khoury G.A, Strain of heated concrete during two thermal cycles – Parts 1,2 and 3, Mag Concr Res, 58, 367–385, 2006 [CrossRef]
  12. 387–400 and 58, 421–435, 2006.
  13. Hager I., Propriétés mécaniques des bétons à haute performanceà haute température – évolution des principales propriétés mécaniques, PhD Thesis, Ecole Nationale des Ponts et Chaussées, 2004. [in French]
  14. Mindeguia J-C., Hager I., Pimienta P., Carre H., Borderie C., Parametric study of transient thermal strain of ordinary and high performance concrete, Cem Concr Res, 48, 40–52, 2013. [CrossRef]